ON THE NAMES OF CERTAIN PEAKS.



It is not often that a surveyor can discover a native name for a peak: natives of the hills do not give names even to remarkable peaks, names. The disappointment," wrote Sir Joseph Hooker, "I found that neither priest nor people knew the name of a single snowy mountain." 

Of the 75 great peaks included in tables i to v but 19 have native names. If we take into account the lower peaks, we find that there are many thousands of prominent but unnamed summits in Asia, and the problem of nomenclature has to be considered. It would be a mistake to attempt to attach an actual name to every peak. Astronomers do not name the stars: in olden times they grouped them in constellations, and they now number them according to right ascension. Colonel Montgomerie endeavoured to introduce for peaks a method resembling that of constellations, and he named the whole Karakoram region K, and its peaks K1, K2, K3, etc.

This system would have answered well, but Colonel Tanner and subsequent surveyors have departed from it, and have adopted the plan of designating each peak by the initial letter of the observer: Tanner called, for instance, the peaks he had observed himself T45, T57, etc. The employment of observer's initials has led to confusion > two and more observers have had the same initial, and the same symbol has thus become attached to different peaks. Moreover the designations given under Tanner's system furnish no clue as to the region in which the peaks are situated.

The nomenclature of a mountain region should not be forced: it should grow spontaneously, and we should never invent a name until its absence has become inconvenient. We cannot do better for Tibet and Turkistan than extend the simple system introduced by Montgomerie for the Karakoram: his method of constellations is more suitable for the peaks of Asia than a long series of successive numbers from west to east would be. We need not design constellations to include one whole range, and we need not follow the astronomical plan of drawing animals and heroes; we can have rectangular constellations enclosed by meridians and parallels.

Peaks however possess in their heights an attribute which stars lack, and there is no more useful means of distinguishing peaks than by thin heights distinguished by their heights. If we are dealing with a complex cluster of peaks, it is simpler to indicate the several members by their heights than to confer on them separate names. In discussions of the peaks of Asia heights must be accepted to a certain extent as substitutes for names. 
Out of the 75 peaks of Asia that are known to exceed 24000 feet in height, 42 have been distributed amongst the ten groups above and may be regarded as belonging to the Himalayan system.

THE GEOLOGY OF THE GREAT PEAKS

In dealing with the great peaks the geologist is at no small disadvantage as compared with the surveyor, whose instruments enable him to work from a distance and to fix with accuracy the position and height of the object of his observation. The geologist, on the other hand, must toil arduously up the mountain sides, examining at close quarters such outcrops of rocks as he can find clear of snow, and, where further progress is barred, must depend for his information on fallen fragments, splintered from the cliffs above and brought down by avalanches and glaciers to form moraines and talus heaps. Thus the composition of the highest peaks is rarely known in any detail, but the general character of the rocks can be ascertained, with a fair approximation to certainty, from observation of the material on their flanks, and from a distant view of the weathering characters and apparent structure of the peaks themselves: it has thus been found that almost all those of 25000 feet or more in height are composed of granite, gneiss, and associated crystalline rocks.

Of the granite there are at least two varieties, a foliated rock composed essentially of quartz, felspar, and biotite (black mica), and a younger non-foliated form containing, in addition to quartz and felspar, white mica (muscovite), black tourmaline, beryl, and various accessory minerals. The former variety was long regarded as a sedimentary rock which had been converted by heat and pressure into gneiss, but its truly intrusive nature was recognized by the late Lieutenant-General C. A. McMahon,* who proved conclusively that the great central gneissose rock of the Himalaya was in reality a granite crushed and foliated by pressure. This rock is frequently pierced by veins of the second or non-foliated variety, and where these run parallel to the foliation planes, they lend to the series a deceptive appearance of bedding and cause it, when seen from a distance, to be mistaken for a mass of stratified deposits. This is a common characteristic of the higher peaks and may be noticed in many of the granitic masses of the great Himalayan range.
Although our experience leads us to assume that all the highest peaks are composed largely of granite, many more observations must be made before this can be positively asserted to be the case. Thus the most important mass of all, the Everest group, is still a blank on our geological maps, and so also is Kulha Kangri in Bhutan. Between these two, however, we know that all the most important peaks are formed of granite. Thus Chumalhari (23930 feet) is composed of foliated (gneissose) granite penetrated by veins of the non-foliated variety, and flanked by the altered representatives of slates and limestones metamorphosed by the granite which has been forced up through them from below. Further to the west, the Kinchinjunga group is also formed of granite.t flanked by metamorphic rocks certainly in part derived from pre-existing sediments but re-arranged and recrystallised by heat and pressure and converted into various forms of gneiss and schist. Owing to the rigid exclusion of British travellers from Nepal, we know little or nothing of the geological characters of the hiehest mountain in the world, since practically the whole country is still unsurveyed. It is probable, however, that, like Kinchinjunga, the Everest group is composed chiefly of granite and gneiss.

To the west of Nepal we are on surer ground, since both Kumaun and Garhwal have been geologically surveyed. Here again the high peaks, such as Nanda Devi, the Kedarnath group, and Kamet,* are all composed of granite and gneiss with gneiss and schist on their flanks. The same may be said of most of the high peaks of Kashmir, including Nanga Parbat, Rakaposhi, and K2,f while granite is also probably the prevailing rock on Muztagh Ata and the other high peaks of the Kashgar range.

This correspondence between the great elevation and the geological structure of the high peaks appears to be too constant to be attributable to mere coincidence, and we are forced to the conclusion that their exceptional height is due to the presence of granite. This may be explained on two separate grounds, either (a) that the superior power of the granite to resist the atmospheric forces tending to their degradation has caused them to stand as isolated masses above surrounding areas of more easily eroded rocks, or (6) that they are areas of special elevation.

If now we examine the relationships of the peaks to one another, we find that along certain definite lines the intervening areas are also frequently composed of the same granite as the peaks themselves, and if we follow these definite lines we further find that they constitute the axes of the great mountain ranges. Thus the great eaks lie on more or less continuous and elevated zones composed of granite and crystalline rocks, and since the lower portions of the zones are of the same composition as the peaks themselves, it is difficult to regard the latter merely as relics of a once continuous zone of uniform height, and it seems probable that special elevating forces have been at work to raise certain parts of the zone above the general level of the whole ; when once such elevation has been brought about, the disparity between the higher peaks and the intervening less elevated areas would undoubtedly be intensified by the destructive forces at work ; the mantle of snow and ice, while slowly carrying on its own work of abrasion, will serve as a protection for the peaks against the disintegrating forces of the atmosphere, whilst the lower unprotected areas will be more rapidly eroded.

By the assumption that the higher peaks are due to special elevatory forces, it is not intended to imply that each peak is the result of an independent movement, for it has already been shown in a previous section of this paper that the peaks occur in well marked clusters, any one of which may cover an area of many hundred square miles: when, therefore, during the development of the Himalaya as a mighty mountain range vast masses of granite welled up from below, forcing their way through and lifting up the pre-existing rocks above, it is probable that owing to dissimilarity of composition and structural weaknesses in certain portions of the earth's crust, movement was more intense at some points than at others, and that the granite was locally raised into more or less dome-like masses standing above the general level of the growing range : these masses were subsequently carved by the process of erosion into clusters of peaks. Whether the elevatory movement is still in progress it is not at present possible to say. but many phenomena observable throughout the Himalaya and Tibet lead us to infer that local elevation has until quite recently been operative, and the numerous earthquakes still occurring with such violence and frequency forcibly remind us that the Himalaya have by no means reached a period of even comparative rest.

Dhawalagiri  Nepal    26,810' 8,172m
Nanga Parbat  Pakistan   26,650' 8,123m
Annapurna  Nepal    26,504' 8,078m
Gasherbrum  China/Pakistan   26,470' 8,068m
Xixabangma Feng  China   26,286' 8,012m
Nanda Devi  India    25,645' 7,817m
Kamet   China/India   25,447' 7,756m
Namjagbarwa Feng  China   25,446' 7,756m
Muztag   China    25,338' 7,723m
Tirich Mir   Pakistan  25,230' 7,690m
Gongga Shan  China    24,790' 7,556m
Kula Kangri  Bhutan    24,784' 7,554m
Muztagata  China    24,757' 7,546m
Kommunizma, Pik  Tajikistan  24,590' 7,495m
Pobedy, Pik  China/Kyrgystan  24,406' 7,439m
Api   Nepal    23,399' 7,132m
Aconcagua, Cerro  Argentina  22,834' 6,960m
Ojos del Salado, Nevado Argentina/Chile    22,572' 6,880m
Bonete, Cerro  Argentina   22,546' 6,872m
Tupungato, Cerro  Argentina/Chile    22,310' 6,800m
Pissis   Argentina   22,241' 6,779m
Mercedario  Argentina   22,211' 6,770m
Hurascarán, Nevado Perú    22,205' 6,768m
Llullaillaco, Volcán  Argentina/Chile    22,057' 6,723m
El Libertador  Argentina   22,047' 6,720m
Cachi   Argentina   22,047' 6,720m
Incahuasi Argentina-Chile     21,720' 6,620m
Sajama, Nevado  Bolivia    21,391' 6,520m
Illimani, Nevado  Bolivia    21,201' 6,462m
Chimborazo  Ecuador   20,702' 6,310m
McKinley, Mt.  U.S. (Alaska)   20,320' 6,194m
Orizaba, Pico de  México    18,406' 5,610m
Popocatépetl, Volcán México    17,930' 5,465m
Iztaccíhuatl  México    17,930' 5,465m
Whitney, Mt.  U.S. (California)   14,494' 4,418m
Duarte, Pico   Dominican Republic   10,417' 3,175m


The Himalaya Range (Sanskrit: literally, "abode of snow", Hindi/Sanskrit: हिमालय, IPA: /hɪˈmɑːləj(ə)/), or the Himalaya for short, is a mountain range in Asia, separating the Indian subcontinent from the Tibetan Plateau. By extension, it is also the name of a massive mountain system that includes the Karakoram, the Hindu Kush, and other, lesser, ranges that extend out from the Pamir Knot.

Together, the Himalayan mountain system is the planet's highest, and home to the world's highest peaks, the Eight-thousanders, which include Mount Everest and K2. To comprehend the enormous scale of this mountain range, consider that Aconcagua, in the Andes, at 6,962 metres (22,841 ft) is the highest peak outside Asia, whereas the Himalayan system includes over 100 mountains exceeding 7,200 m (23,622 ft).

Some of the world's major rivers, Ganges, Indus, Brahmaputra, Yangtze, Mekong, Salween, Red River (Asia), Xunjiang, Chao Phraya, Irrawaddy River, Amu Darya, Syr Darya, Tarim River and Yellow River, rise in the Himalayas, and their combined drainage basin is home to some 3 billion people (almost half of Earth's population) in countries which includes Afghanistan, Bangladesh, Bhutan, People's Republic of China, India, Nepal, Burma, Cambodia, Tajikistan, Uzbekistan, Turkmenistan, Kazakhstan, Kyrgyzstan, Thailand, Laos, Vietnam, Malaysia and Pakistan.

The Himalayas have profoundly shaped the cultures of South Asia; many Himalayan peaks are sacred in Hinduism, Buddhism and Sikhism. The main Himalaya range runs, west to east, from the Indus river valley to the Brahmaputra river valley, forming an arc 2,400 km (1,491 mi) long, which varies in width from 400 km (249 mi) in the western Kashmir-Xinjiang region to 150 km (93 mi) in the eastern Tibet-Arunachal Pradesh region. The range consists of three coextensive sub-ranges, with the northern-most, and highest, known as the Great or Inner Himalayas.

Comments

Popular posts from this blog

The Karakoram Range

RAZIA SULTAN (The First Women Ruler of India)

Islamic history of Firon